Title: Materials for Ener	rgy harvesting	
Organizer	Institution	Contact email
Spyros Diplas	SINTEF, Norway	spyros.diplas@sintef.no
Theodora Kyratsi	University of Cyprus, CY	kyratsi@ucy.ac.cy
Truls Norby	University of Oslo, Norway	truls.norby@kjemi.uio.no
Paul R. Ohodnicki	National Energy Technology Laboratory, USA	Paul.Ohodnicki@netl.doe.gov
Amit Pandey	LG Fuel Cell Systems Inc., USA	dramitpandey@gmail.com
Monica Della Pirriera,	Leitat, Spain	mdella@leitat.org
Susan Schorr	HZB and FU Berlin, Germany	susan.schorr@helmholtz-berlin.de
João Manuel de Almeida Serra	University of Lisbon, Portugal	jmserra@fc.ul.pt
Jianwu Sun	Linköping University, Sweden.	jiasu@ifm.liu.se
Summary		

Major energy saving solutions need to be developed and implemented as soon as possible due to the increasing global demands as well as the environmental impact of using fossil fuels. The need for renewable energy, energy efficiency, and energy harvesting is motivating the discovery of new materials and design of new devices and structures. At energy harvesting, the energy is derived from sources such as solar, thermal, and vibrational energy. In the view of this

E.3

demand, this symposium emphasizes on energy harvesting and aims to cover a wide spectrum of recent developments on materials used for energy harvesting based on solar energy (PV, photocatalysts), the utilization of thermal gradients (thermoelectrics) and the vibrational energy (piezoelectrics).

This symposium will focus on the following, but not limited, areas; manufacturing/processing issues, characterization of structures/nanostructures, structural defects, surface, bulk and interfacial phenomena, optoelectronic and thermoelectric properties, transport properties, multiscale modeling, new concepts for next-generation materials. The symposium aims at linking the fundamental knowledge and information obtained from characterization, modeling and testing to the development of devices with improved performance and if possible reduced costs.

Topics to be covered by the symposium:

- ✓ Silicon-based solar cells
- Thermal PV materials
- ✓ Innovative materials for solar applications
- ✓ Perovskite solar cells
- Compound semiconductor based solar cells
- ✓ Tandem and heterojunction solar cell structures
- \checkmark Current and new practices in processing
- \checkmark Materials challenges of thermoelectric devices
- \checkmark Bulk materials and Low-dimensional thermoelectric materials
- Piezoelectric Materials: composition, fabrication and characterization
- \checkmark Pb-free Piezoelectric materials
- Characterization and modelling of materials, properties and devices
- \checkmark Advances in materials processing
- Solar energy conversion materials properties
- \checkmark Photocatalysts
- \checkmark Photoelectrochemical (PEC) cells
- \checkmark Solar-driven charge carrier function and energy conversion

KEYNOTE SPEAKER
Prof. Young Soo Kang, Sogang University, Korea
"Artificial Photosynthesis via Solar Light Driven CO2 Reduction into Methanol"
Papers presented in the Symposium will be published in a special issue on "Materials for Energy
Harvesting" in Physica Status Solidi A